For the incompressible Navier-Stokes Equations:

1. Which of these is nonlinear?
 (a) \(\rho \frac{\partial v}{\partial t} \)
 (b) \(-\nabla p \)
 (c) \(\bar{v} \cdot \nabla \bar{v} \)
 (d) \(\mu \nabla^2 v \)
 (e) all of them

2. For a 1-D flow in the y direction between 2 parallel, infinite vertical plates, separated by a width ‘h’ in the x direction, with constant pressure gradient ‘\(-\rho \mathbf{J} \)’ and body force of \(-g \rho \) in the y direction, the y momentum equation boils down to:
 (a) \(\frac{\partial p}{\partial x} = \frac{J - g - \rho \frac{2v_y^2}{\partial x^2}}{\partial y} \)
 (b) \(J = \rho \frac{\partial v_y}{\partial y} + \frac{\partial x}{\partial x} \)
 (c) \(\frac{\partial v_y}{\partial y} = J - g + \rho \frac{\partial x}{\partial x} \)
 (d) \(\frac{\partial v_y}{\partial y} = J - g + \rho \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} \right) \)
 (e) \(J = \rho g + \rho \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} \right) \)

3. A material or substantial derivative dB/dt of a scalar ‘B(x,t)’ is given as:
 (a) \(\partial B / \partial t \)
 (b) \(\rho v \cdot \nabla B \)
 (c) \(\rho \frac{\partial v_x}{\partial x} + \rho \frac{\partial v_y}{\partial y} \)
 (d) \(\rho \frac{\partial v_z}{\partial z} \)
 (e) \(\mu \nabla^2 v \)

4. The continuity equation is given by:
 (a) \(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \)
 (b) conservation of mass for a system
 (c) divergence theorem
 (d) Cauchy’s rule
 (e) all but d

5. A simple 1-D diffusion process is given by:
 \(\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} \) (where ‘D’ is the diffusivity). The units of ‘D’ are:
 (a) m/s
 (b) m\(^2\)/s
 (c) m\(^3\)/s
 (d) \(m^2/s^2 \)
 (e) m\(^3\)/s
 (f) m\(^2\)/s

6. Viscous forces on surfaces are found by taking the scalar product of the outward pointing surface vector with the viscous stress tensor \(\mathbf{\tau} \). For Newtonian incompressible fluids, \(\mathbf{\tau} = 2 \mu \mathbf{e} \), where \(\mathbf{e} \) is the rate of strain tensor. The tensor is symmetric; so that \(e_{ij} = e_{ji} \) and \(e_{ij} = \frac{1}{2} \left[\left(\partial v_i / \partial x_j + \partial v_j / \partial x_i \right) + \left(\partial v_i / \partial x_j - \partial v_j / \partial x_i \right) \right] \). Because \(\nabla \cdot \bar{v} = 0 = e_{ii} \) from incompressibility, then the sum of the principle values \((\gamma_1, \gamma_2, \gamma_3) \) of the tensor must be zero. From the rate of change of the internal energy per unit volume derived in the math notes, the rate of heating by viscous friction of a turbulent fluid particle \(\rho \frac{Du}{Dt} = \mathbf{\tau} : \left(\nabla \bar{v} \right) = \rho \mathbf{\epsilon} \). Thus the units of \(\mathbf{\epsilon} \) are
 (a) m/s
 (b) m\(^3\)/s
 (c) m\(^2\)/s
 (d) m\(^2\)/s
 (e) m\(^3\)/s

Problems 7-10: The pressure drop in a pipe depends on diameter ‘d’, length ‘L’, velocity ‘v’, density ‘\(\rho \)’ and viscosity ‘\(\mu \)’

7. How many fundamental dimensions are involved and which ones?
 (a) 2; L and T
 (b) 3; L, T and M
 (c) 4; L, T, M and \(\theta \)
 (d) 3; L, M and \(\theta \)
 (e) 2; T and M

8. How many ‘pi groups’ will we have?
 (a) 2 (b) 3 (c) 4 (d) 5 (e) 1

9. Which of these is an appropriate selection for the recurring set of variables?
 (a) L, d and v (b) L, d and \(\rho \) (c) \(\mu \) and \(\rho \)
 (d) \(d, v \) and \(\rho \)
 (e) L and \(\mu \)

10. A simple pendulum with time period ‘T’ has mass ‘m’ , length ‘L’ and is subject to acceleration due to gravity ‘g’.
 From dimensional arguments, how might T depend on the other variables?
 (a) \(T \propto m(L/g)^{1/2} \)
 (b) \(T \propto gL \)
 (c) \(T \propto (L/g)^{1/2} \)
 (d) \(T \propto L/g \)
 (e) \(T \propto g^{1/2}L \)